Positional Molding vs. Craniosynostosis

David Chesler, MD, PhD, FAANS, FAAP
Associate Professor of Neurological Surgery and Pediatrics
Director of Pediatric Neurological Surgery
Stony Brook Children’s

Elias Rizk, MD, MSc, FAANS
Associate Professor of Neurosurgery
Division Chief, Pediatric Neurosurgery
Penn State Health
Disclosure and Disclaimer

- Presenter David Chesler, MD, PhD, FAANS, FAAP
 - I have no financial disclosures.

- Presenter Elias Rizk, MD, MSc, FAANS
 - I have no financial disclosures.

- Statements and opinions expressed are those of the authors and not necessarily those of the American Academy of Pediatrics (AAP).

- Reckitt Mead Johnson sponsors programs such as this to give healthcare professionals access to scientific and educational information provided by experts. The presenters have complete and independent control over the planning and content of the presentation and are not receiving any compensation from Reckitt Mead Johnson for this presentation. The presenters’ comments and opinions are not necessarily those of Reckitt Mead Johnson. In the event that the presentation contains statements about uses of drugs that are not within the drugs' approved indications, Reckitt Mead Johnson does not promote the use of any drug for indications outside the FDA-approved product label.
Objectives

- Understand and be able to discuss the basic pathology underlying positional molding.
- Be able to discuss the circumstances and timing under which it is necessary and appropriate to refer for neurosurgical consultation.
- Be able to discuss treatment options for positional molding and when they should be employed.
- Understand and be able to discuss the basic pathologies underlying nonsyndromic and syndromic craniosynostosis.
- Be able to discuss the circumstances and timing under which it is necessary and appropriate to refer for neurosurgical consultation.
- Be able to discuss treatment options for syndromic and nonsyndromic craniosynostosis and when they should be employed.
Abnormal Head Shape

- Abnormal head shape is due to the effects of either:

 Intrinsic factors, such as prematurely closed suture(s) restricting growth in a given direction

 or

 Extrinsic factors, such as an infant lying on the same area of his or her head all the time

Positional Molding

- **Plagiocephaly** – Asymmetric flattening of the occiput. With progressive deformity, ipsilateral anterior displacement of the ear and hemiface can be appreciated.

- **Brachycephaly** – Symmetric flattening of the occiput with shortening in the anterior-posterior diameter (APD) and widening of the biparietal diameter (BPD)

- **Dolichocephaly** – Elongation of the skull (increased APD) or biparietal narrowing that can be seen in NICU plagiocephaly and other benign conditions

- **Blending** of these head shapes can be seen.
Positional Molding

- Epidemiology
 - Increased prevalence since “Safe Sleep Campaign” instituted in 1992
 - Subset with asymmetry at birth (13%–31%)
 - Most develop in first 2 months
 - Highest prevalence at 4 months
 - High association with torticollis
 - More often on the right side (54%–71%)
 - Risk factors
 - Primiparity, maternal age >35, breech position, prolonged labor and assisted vaginal delivery, oligohydramnios, cephalohematoma, male sex
Ipsilateral frontal bossing

Ipsilateral ear displaced anteriorly

Contralateral occipital bossing

Ipsilateral parieto-occipital flattening
Ipsilateral ear displaced anteriorly

Ipsilateral frontal bossing

Ipsilateral parieto-occipital flattening

Contralateral occipital bossing
Positional Molding

- Diagnosis made based on history and physical
 - Head shape usually normal at birth
 - Classic appearance

- If concern for synostosis, early referral to allow for time-dependent interventions

- Peaks at 4 months and often improves on own
 - Minimize with positioning program
 - Often do not helmet prior to 6 months given likelihood of natural resolution
Positional Molding

How is positional molding evaluated?

Standardized cranial measurements (anthropometry) are employed.

Plagiocephaly:
- Cranial Vault Asymmetry (CVA)
- CVA Index (CVAI)

Brachycephaly:
- Cranial or Cephalic Index (CI)

Cranial Vault Asymmetry (CVA) = longest diameter − shortest diameter

Cranial Vault Asymmetry Index (CVAI) = \(\frac{CVA}{\text{shortest diameter}} \times 100\)

Cranial (cranioproportional) Index (CI) = \(\frac{\text{width}}{\text{length}} \times 100\)
Positional Molding

- **Helmet Therapy**
 - Worn 23 hours per day for at least 3 months
 - Rarely see improvement if initiated after 1 year
 - 85% of head growth in first year
 - Expensive, potential lack of insurance reimbursement
 - Complications
 - Skin breakdown, pressure ulcers, contact dermatitis
 - In *mild* and *moderate* cases helmeting does NOT provide significant improvement in outcome compared to behavioral modification alone. (van Wijk RM, van Vlimmeren LA, Groothuis-Oudshoorn CG, Van der Ploeg CP, Ijzerman MJ, Boere-Boonekamp MM. Helmet therapy in infants with skull deformation: randomised controlled trial. *BMJ.* 2014;348:g2741)
Positional Molding

- Take home
 - Parental education and repositioning program
 - Supine to sleep, but tummy time while awake
 - If asymmetry +/- torticollis, recommend repositioning, physical therapy, and stretching)
 - If severe deformity (defined as a diagonal difference of >12 mm) at 6 months, will likely achieve greater improvement with helmet
 - Head shape is unlikely to affect cognitive development
 - Early referral if synostosis is suspected (the earlier the better)

If unsure, please refer!
Craniosynostosis

- The calvarium (skull) is comprised of 8 major bones (paired frontal, parietal, occipital, and temporosphenoidial) which are separated by fibrous joints called sutures.

- Craniosynostosis is a condition in which 1 or more sutures close prematurely resulting in problems with normal skull growth.
Craniosynostosis

- Sutures close in a sequential time-dependent manner.
 - Metopic: 3–8 months
 - Sagittal: 22 years
 - Coronal: 24 years
 - Lambdoid: 26 years
 - Squamosal: 60 years

- Growth velocity of the skull changes with age.
 - The head typically doubles in size in the first 6–9 months, with another doubling by 2 years.
Craniosynostosis

- Normal skull growth is perpendicular to the suture.
 - Understanding this principle can predict the site and shape of the skull deformity associated with premature sutural closure (Virchow’s hypothesis).

- Craniosynostosis can adversely impact the intracranial pressure, developmental delay, and visual disturbances in some instances.
Craniosynostosis

- Epidemiology
 - Incidence is 1 in 2,000–2,500 live births.
 - Single suture, nonsyndromic synostosis accounts for up to 95% of all cases.
 - Most cases of nonsyndromic craniosynostosis are thought to be sporadic but the following have been implicated to some degree:
 - Metabolic (hyperthyroidism) or hematologic syndromes
 - Clomiphene citrate, valproic acid, phenytoin and retinoic acid
 - Maternal smoking
 - Advanced maternal age
 - >100 mutations, including those affecting *FGFR1-3, NELL1, MSX2, TWIST*, and *GLI3*
Craniosynostosis

- Head shape abnormality is usually present at birth (most synostosis cases occur in utero).
- The diagnosis of craniofacial deformity is primarily based upon physical examination.
- Radiographic studies are best performed at a center with a craniofacial team.
- 3D computed tomography (CT) scan imaging
 - Confirm diagnosis and rule out mimics
 - Surgical planning
 - Very low dose CT
 - 85% reduction in radiation dose compared to CT
Craniosynostosis

- Treatment
 - Goal of treatment is complete release of fused suture and correction of compensatory skull changes.
 - Timing of surgery is important to the outcome.
 - Early surgery utilizes the rapid brain growth potential for skull remodeling.
 - Birth = 400g ➔ 6 months = 800g ➔ 2.5 years = 1600g
Craniosynostosis

- Surgical techniques
 - Endoscopic/minimally invasive
 - Done early—hence, timely referral is key (average age at surgery is 3 months; may be considered up to 6 months of age)
 - Takes advantage of the rapid brain/skull growth in this age group
 - Less blood loss, shorter operating room and hospital stay, lower cost, and smaller incisions
 - Requires springs or postoperative helmeting (for up to 1 year)
 - Open
 - Performed at 6–12 months of age (or later if child is older at diagnosis)
 - More blood loss, longer operating room and hospital stay, bigger incision but immediate correction, and no postoperative molding orthosis
Sagittal Craniosynostosis

- Scaphocephaly
 - Most common form of single suture synostosis
 - 50%–60% of craniosynostosis cases
 - Characterized by a narrow, elongated skull +/- frontal and/or occipital bossing
 - Can be associated with intracranial hypertension if left untreated
Dolichocephaly

Modest elongated AP dimension with biparietal narrowing **without** frank frontal bossing or occipital bulging

Scaphocephaly

Elongated AP dimension with frontal bossing, occipital bulleting, and saddle deformity at vertex

Coronal Craniosynostosis

- Anterior Plagiocephaly
 - 15%–30% of synostosis cases
 - Unilateral coronal synostosis >> Bilateral coronal synostosis
 - Unilateral coronal synostosis
 - Flattening of the forehead on the affected side
 - Vertically elongated eye on the affected side—called a “Harlequin Eye”
 - Nose deviated to contralateral side
 - Ear displaced anteriorly on the affected side
 - Strabismus is seen in ~30% of cases
 - Can be associated with intracranial hypertension if left untreated
Coronal Craniosynostosis

Fronto-orbital retrusion and elevated ipsilateral orbit (Harlequin Eye), ipsilateral nasal root and contralateral nasal tip deviation, and anterior displacement of ipsilateral ear

Coronal Craniosynostosis

- Brachycephaly
 - 5%-10% of coronal synostosis cases
 - Bilateral coronal synostosis (turribrachycephaly)
 - Biparietal widening with AP shortening (brachycephaly)
 - Frontal towering (turricephaly)
 - Flattening of the occiput and the caudal frontal bone with bulging of the cephalic frontal bone can be seen
 - Bilateral Harlequin Eyes may be observed radiographically
 - Ridging of the coronal (or any) sutures without the skull deformity associated with synostosis of that suture is likely benign overriding of cranial bones commonly seen in infancy.
Coronal Craniosynostosis

Metopic Craniosynostosis

- Trigonocephaly
 - 4%-10% of synostosis cases
 - Metopic synostosis
 - Triangular wedging of the frontal bones
 - Hypotelorism with inter-orbital and bitemporal narrowing with compensatory prominence of the parietal bosses
 - Posterior displacement of the superolateral orbital rims
 - Can be associated with intracranial hypertension if left untreated
 - Must be differentiated from benign metopic ridging, characterized by a prominence along the closed metopic suture (typically superior/adjacent to the anterior fontanelle) without trigonocephaly
Metopic synostosis

- Pointed forehead, hypotelorism, and temporal retrusion

Metopic ridge

- Rounded forehead, normally spaced eyes, and a prominence of the metopic ridge

Courtesy of Elias Rizk, MD, MSc, FAANS
Lambdoid Craniosynostosis

- Posterior Plagiocephaly
 - <2% of all cases
 - Unilateral lambdoid synostosis
 - Trapezoid shape with flattening of the frontal and occipital prominences on the affected side
 - Contralateral frontal and parietal bossing
 - Posterior and inferior displacement of the ear on the affected side
 - Must be differentiated from the far more common non-synostotic acquired positional molding previously discussed
 - Can be associated with intracranial hypertension if left untreated

![Parallelogram Deformational plagiocephaly](image1)

![Trapezoid Lambdoid synostosis](image2)
Craniosynostosis

- Syndromic Craniosynostoses
 - <5% of craniosynostosis cases
 - Broad spectrum of genetic variability within a syndrome
 - Typically have much more pronounced facial dysmorphism
 - Crouzon, Apert, Pfeiffer, Saethre-Chotzen syndrome, Muenke syndrome, Carpenter syndrome, etc.
Questions?

Thank You
Visit *Pediatric Care Online* today for additional information on this and other topics.

pediatriccare.solutions.aap.org

Pediatric Care Online is a convenient electronic resource for immediate expert help with virtually every pediatric clinical information need with must-have resources that are included in a comprehensive reference library and time-saving clinical tools.

Don’t have a subscription to PCO?
Then take advantage of a free trial today!
pediatriccare.solutions.aap.org/SS/Free_Trial.aspx